DS05-20849-1E

FLASH MEMORY

CMOS

8M (1M \times 8/512K \times 16) BIT

MBM29LL800T-15/MBM29LL800B-15

■ FEATURES

- Voltage range (2.4 V to 3.0 V) for read, program and erase
 Minimizes system level power requirements
- · Low power consumption

15 mA maximum active read current for Word Mode

10 mA maximum active read current for Byte Mode

35 mA maximum program/erase current

1 μA maximum standby current

· Automatic sleep mode

When addresses remain stable, automatically switches themselves to low power mode $1~\mu A$ maximum in automatic sleep mode

Compatible with JEDEC-standard commands

Uses same software commands as E2PROMs

• Compatible with JEDEC-standard world-wide pinouts

48-pin TSOP(I) (Package suffix: PFTN-Normal Bend Type, PFTR-Reversed Bend Type) 46-pin SON (Package suffix: PN)

- Minimum 100,000 program/erase cycles
- High performance

150 ns maximum access time

Sector erase architecture

One 8K word, two 4K words, one 16K word, and fifteen 32K words sectors in word mode One 16K byte, two 8K bytes, one 32K byte, and fifteen 64K byte sectors in byte mode Any combination of sectors can be concurrently erased. Also supports full chip erase

- Boot Code Sector Architecture
 - T = Top sector
 - B = Bottom sector
- Embedded Erase[™] Algorithms

Automatically pre-programs and erases the chip or any sector

Embedded program[™] Algorithms

Automatically programs and verifies data at specified address

- Data Polling and Toggle Bit feature for detection of program or erase cycle completion
- Ready-Busy output (RY/BY)

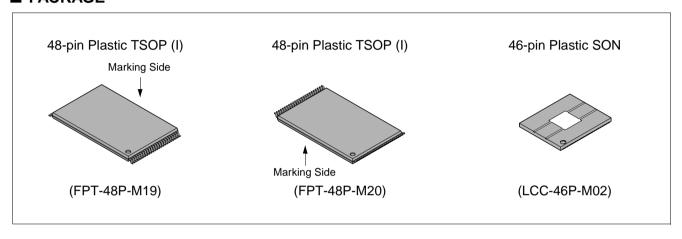
Hardware method for detection of program or erase cycle completion

(Continued)

(Continued)

• Erase Suspend/Resume

Suspends the erase operation to allow a read and/or program in another sector within the same device


Sector protection

Hardware method disables any combination of sectors from program or erase operations

• Temporary sector unprotection

Temporary sector unprotection via the RESET pin

■ PACKAGE

■ GENERAL DESCRIPTION

The MBM29LL800T/B is a 8M-bit, single low voltage supply Flash memory organized as 1M bytes of 8 bits each or 512K words of 16 bits each. The MBM29LL800T/B is offered in a 48-pin TSOP and 46-pin SON packages. The device is designed to be programmed in-system with the standard system minimum 2.4 V V_{CC} supply. 12.0 V V_{PP} and 5.0 V V_{CC} are not required for write or erase operations. The device can also be reprogrammed in standard EPROM programmers.

The standard MBM29LL800T/B offers access times of 150 ns, allowing operation of high-speed microprocessors without wait states. To eliminate bus contention the device has separate chip enable ($\overline{\text{CE}}$), write enable ($\overline{\text{WE}}$), and output enable ($\overline{\text{OE}}$) controls.

The MBM29LL800T/B is pin and command set compatible with JEDEC standard E²PROMs. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine which controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from 5.0 V and 12.0 V Flash or EPROM devices.

The MBM29LL800T/B is programmed by executing the program command sequence. This will invoke the Embedded Program Algorithm which is an internal algorithm that automatically times the program pulse widths and verifies proper cell margins. Typically, each sector can be programmed and verified in about 0.5 seconds. Erase is accomplished by executing the erase command sequence. This will invoke the Embedded Erase Algorithm which is an internal algorithm that automatically preprograms the array if it is not already programmed before executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies proper cell margins.

Any individual sector is typically erased and verified in 1.0 second. (If already preprogrammed.)

The device also features minimum of a sector erase architecture. The sector mode allows each sector to be erased and reprogrammed without affecting other sectors. The MBM29LL800T/B is erased when shipped from the factory.

The device features single 2.4 V power supply operation for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations. A low V_{CC} detector automatically inhibits write operations on the loss of power. The end of program or erase is detected by \overline{Data} Polling of DQ_7 , by the Toggle Bit feature on DQ_6 , or the RY/BY output pin. Once the end of a program or erase cycle has been comleted, the device internally resets to the read mode.

The MBM29LL800T/B also has a hardware RESET pin. When this pin is driven low, execution of any Embedded Program Algorithm or Embedded Erase Algorithm is terminated. The internal state machine is then reset to the read mode. The RESET pin may be tied to the system reset circuitry. Therefore, if a system reset occurs during the Embedded Program Algorithm or Embedded Erase Algorithm, the device is automatically reset to the read mode and will have erroneous data stored in the address locations being programmed or erased. These locations need re-writing after the Reset. Resetting the device enables the system's microprocessor to read the boot-up firmware from the Flash memory.

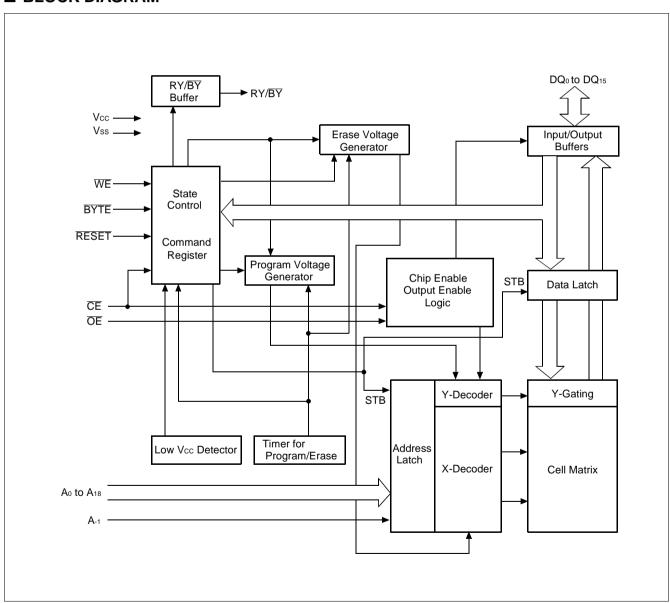
Fujitsu's Flash technology combines years of Flash memory manufacturing experience to produce the highest levels of quality, reliability, and cost effectiveness. The MBM29LL800T/B memory electrically erases all bits within a sector simultaneously via Fowler-Nordhiem tunneling. The bytes/words are programmed one byte/word at a time using the EPROM programming mechanism of hot electron injection.

■ FLEXIBLE SECTOR-ERASE ARCHITECTURE

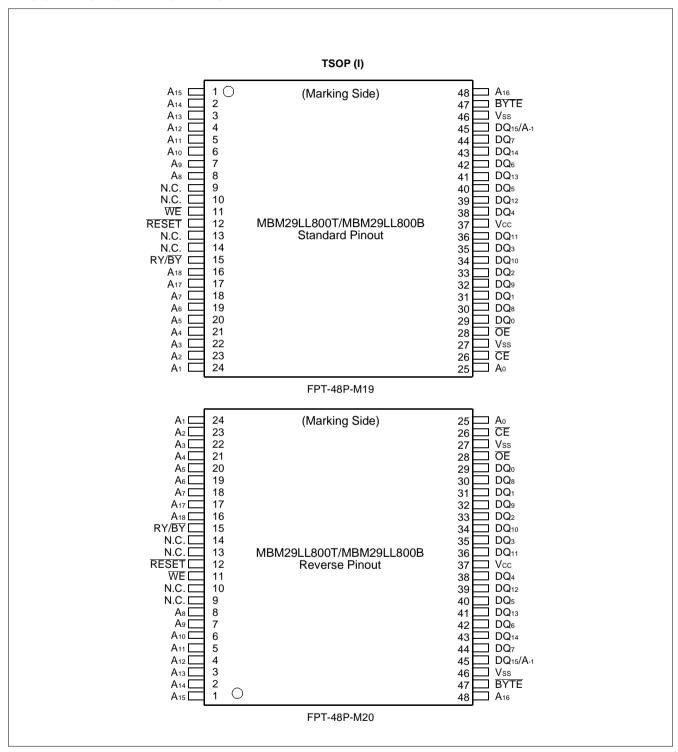
- One 8K word, two 4K words, one 16K word, and fifteen 32K words sectors in word mode.
- One 16K byte, two 8K bytes, one 32K byte, and fifteen 64K bytes sectors in byte mode.
- · Individual-sector, multiple-sector, or bulk-erase capability.
- Individual or multiple-sector protection is user definable.

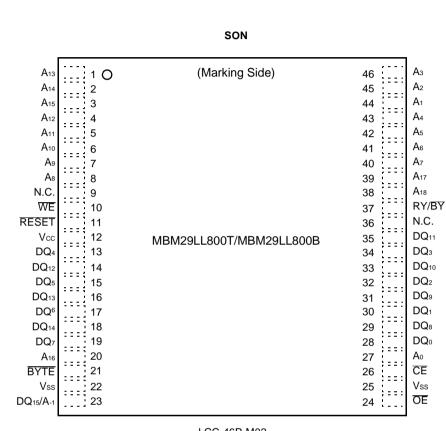
Sector	Sector Size	(×8) Address Range	(× 16) Address Range
SA0	64 Kbytes or 32 Kwords	00000H to 0FFFFH	00000H to 07FFFH
SA1	64 Kbytes or 32 Kwords	10000H to 1FFFFH	08000H to 0FFFFH
SA2	64 Kbytes or 32 Kwords	20000H to 2FFFFH	10000H to 17FFFH
SA3	64 Kbytes or 32 Kwords	30000H to 3FFFFH	18000H to 1FFFFH
SA4	64 Kbytes or 32 Kwords	40000H to 4FFFFH	20000H to 27FFFH
SA5	64 Kbytes or 32 Kwords	50000H to 5FFFFH	28000H to 2FFFFH
SA6	64 Kbytes or 32 Kwords	60000H to 6FFFFH	30000H to 37FFFH
SA7	64 Kbytes or 32 Kwords	70000H to 7FFFFH	38000H to 3FFFFH
SA8	64 Kbytes or 32 Kwords	80000H to 8FFFFH	40000H to 47FFFH
SA9	64 Kbytes or 32 Kwords	90000H to 9FFFFH	48000H to 4FFFFH
SA10	64 Kbytes or 32 Kwords	A0000H to AFFFFH	50000H to 57FFFH
SA11	64 Kbytes or 32 Kwords	B0000H to BFFFFH	58000H to 5FFFFH
SA12	64 Kbytes or 32 Kwords	C0000H to CFFFFH	60000H to 67FFFH
SA13	64 Kbytes or 32 Kwords	D0000H to DFFFFH	68000H to 6FFFFH
SA14	64 Kbytes or 32 Kwords	E0000H to EFFFFH	70000H to 77FFFH
SA15	32 Kbytes or 16 Kwords	F0000H to F7FFFH	78000H to 7BFFFH
SA16	8 Kbytes or 4 Kwords	F8000H to F9FFFH	7C000H to 7CFFFH
SA17	8 Kbytes or 4 Kwords	FA000H to FBFFFH	7D000H to 7DFFFH
SA18	16 Kbytes or 8 Kwords	FC000H to FFFFFH	7E000H to 7EFFFH

MBM29LL800T Top Boot Sector Architecture


Sector	Sector Size	(×8) Address Range	(× 16) Address Range
SA0	16 Kbytes or 8 Kwords	00000H to 03FFFH	00000H to 01FFFH
SA1	8 Kbytes or 4 Kwords	04000H to 05FFFH	02000H to 02FFFH
SA2	8 Kbytes or 4 Kwords	06000H to 07FFFH	03000H to 03FFFH
SA3	32 Kbytes or 16 Kwords	08000H to 0FFFFH	04000H to 07FFFH
SA4	64 Kbytes or 32 Kwords	10000H to 1FFFFH	08000H to 0FFFFH
SA5	64 Kbytes or 32 Kwords	20000H to 2FFFFH	10000H to 17FFFH
SA6	64 Kbytes or 32 Kwords	30000H to 3FFFFH	18000H to 1FFFFH
SA7	64 Kbytes or 32 Kwords	40000H to 4FFFFH	20000H to 27FFFH
SA8	64 Kbytes or 32 Kwords	50000H to 5FFFFH	28000H to 2FFFFH
SA9	64 Kbytes or 32 Kwords	60000H to 6FFFFH	30000H to 37FFFH
SA10	64 Kbytes or 32 Kwords	70000H to 7FFFFH	38000H to 3FFFFH
SA11	64 Kbytes or 32 Kwords	80000H to 8FFFFH	40000H to 47FFFH
SA12	64 Kbytes or 32 Kwords	90000H to 9FFFFH	48000H to 4FFFFH
SA13	64 Kbytes or 32 Kwords	A0000H to AFFFFH	50000H to 57FFFH
SA14	64 Kbytes or 32 Kwords	B0000H to BFFFFH	58000H to 5FFFFH
SA15	64 Kbytes or 32 Kwords	C0000H to CFFFFH	60000H to 67FFFH
SA16	64 Kbytes or 32 Kwords	D0000H to DFFFFH	68000H to 6FFFFH
SA17	64 Kbytes or 32 Kwords	E0000H to EFFFFH	70000H to 77FFFH
SA18	64 Kbytes or 32 Kwords	F0000H to FFFFFH	78000H to 7FFFFH

MBM29LL800B Bottom Boot Sector Architecture


■ PRODUCT LINE UP


Part	No.	MBM29LL800T/800B
Speed Option	$Vcc = 2.7 V_{-0.3 V}^{+0.3 V}$	-15
Max. Address Access	Time (ns)	150
Max. CE Access Time	(ns)	150
Max. OE Access Time	(ns)	55

■ BLOCK DIAGRAM

■ CONNECTION DIAGRAMS

LCC-46P-M02

■ LOGIC SYMBOL

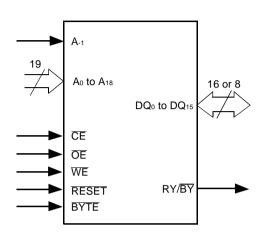


Table 1 MBM29LL800T/B Pin Configuration

Pin	Function
A-1, A0 to A18	Address Inputs
DQ0 to DQ15	Data Inputs/Outputs
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
RY/BY	Ready-Busy Output
RESET	Hardware Reset Pin/ Temporary Sector Unprotection
BYTE	Selects 8-bit or 16-bit mode
N.C.	Pin Not Connected Internally
Vss	Device Ground
Vcc	Device Power Supply (2.7 V $^{+0.3\text{V}}_{-0.3\text{V}}$)

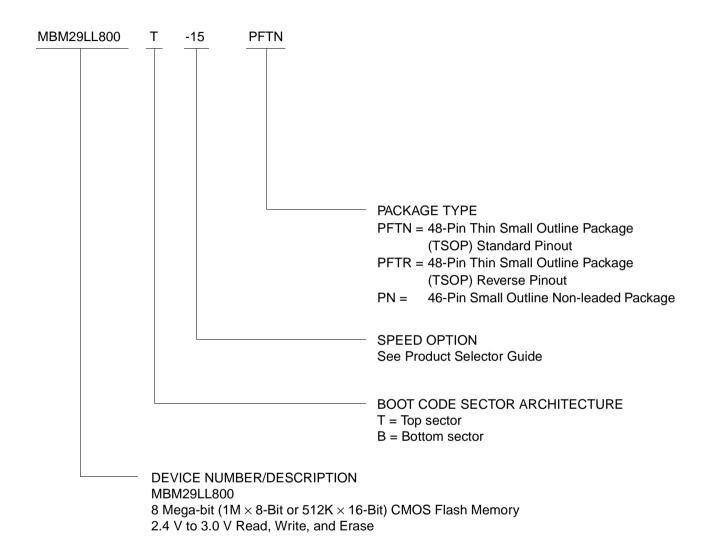
Table 2 MBM29LL800T/B User Bus Operation (BYTE = VIH)

Operation	CE	ŌĒ	WE	Ao	A 1	A 6	A 9	DQ ₀ to DQ ₁₅	RESET
Auto-Select Manufacture Code (1)	L	L	Н	L	L	L	VID	Code	Н
Auto-Select Device Code (1)	L	L	Н	Н	L	L	VID	Code	Н
Read (3)	L	L	Н	Ao	A ₁	A 6	A 9	D оит	Н
Standby	Н	Х	Х	Х	Х	Х	Х	HIGH-Z	Н
Output Disable	L	Н	Н	Χ	Х	Х	Х	HIGH-Z	Н
Write (Program/Erase)	L	Н	L	Ao	A ₁	A 6	A 9	DIN	Н
Enable Sector Protection (2), (4)	L	VID	Ъ	L	Н	L	VID	Х	Н
Verify Sector Protection (2), (4)	L	L	Н	L	Н	L	VID	Code	Н
Temporary Sector Unprotection	Х	Х	Х	Χ	Х	Х	Х	Х	VID
Reset (Hardware)/Standby	Х	Х	Х	Х	Х	Х	Х	HIGH-Z	L

Table 3 MBM29LL800T/B User Bus Operation (BYTE = V_{IL})

Operation	CE	OE	WE	DQ ₁₅ /A-1	Ao	A 1	A 6	A 9	DQ ₀ to DQ ₇	DQ ₈ to DQ ₁₅	RESET
Auto-Select Manufacture Code (1)	L	L	Н	L	L	L	L	VID	Code	HIGH-Z	Н
Auto-Select Device Code (1)	L	L	Н	L	Н	L	L	VID	Code	HIGH-Z	Н
Read (3)	L	L	Н	A -1	A ₀	A 1	A 6	A 9	D оит	HIGH-Z	Н
Standby	Н	Х	Х	Х	Χ	Х	Х	Χ	HIGH-Z	HIGH-Z	Н
Output Disable	L	Н	Н	Х	Χ	Х	Х	Х	HIGH-Z	HIGH-Z	Н
Write (Program/Erase)	L	Н	L	A -1	A ₀	A 1	A 6	A 9	Din	HIGH-Z	Н
Enable Sector Protection (2), (4)	L	VID	T	L	L	Н	L	VID	Х	HIGH-Z	Н
Verify Sector Protection (2), (4)	L	L	Н	L	L	Н	L	VID	Code	HIGH-Z	Н
Temporary Sector Unprotection	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Х	HIGH-Z	VID
Reset (Hardware)/Standby	Х	Х	Х	Х	Χ	Х	Х	Χ	HIGH-Z	HIGH-Z	L

Legend: L = V_{IL} , H = V_{IH} , X = V_{IL} or V_{IH} . $\neg \Gamma$ = pulse input. See DC Characteristics for voltage levels.


Notes: 1. Manufacturer and device codes may also be accessed via a command register write sequence. See Table 7.

- 2. Refer to the section on Sector Protection.
- 3. WE can be V_{IL} if \overline{OE} is V_{IL} , \overline{OE} at V_{IH} initiates the write operations.
- 4. $Vcc = 2.6 V_{-0.2 V}^{+0.4 V}$

■ ORDERING INFORMATION

Standard Products

Fujitsu standard products are available in several packages. The order number is formed by a combination of:

■ FUNCTIONAL DESCRIPTION

Read Mode

The MBM29LL800T/B has two control functions which must be satisfied in order to obtain data at the outputs. $\overline{\text{CE}}$ is the power control and should be used for a device selection. $\overline{\text{OE}}$ is the output control and should be used to gate data to the output pins if a device is selected.

Address access time (t_{ACC}) is equal to the delay from stable addresses to valid output data. The chip enable access time (t_{CE}) is the delay from stable addresses and stable \overline{CE} to valid data at the output pins. The output enable access time is the delay from the falling edge of \overline{OE} to valid data at the output pins. (Assuming the addresses have been stable for at least t_{ACC} – t_{OE} time.) When reading out a data without changing addresses after power-up, it is necessary to input hardware reset or change \overline{CE} pin from "H" or "L". See Figure 5.1 for timing specifications.

Standby Mode

There are two ways to implement the standby mode on the MBM29LL800T/B devices. One is by using both the CE and RESET pins; the other via the RESET pin only.

When using both pins, a CMOS standby mode is achieved with $\overline{\text{CE}}$ and $\overline{\text{RESET}}$ inputs both held at $\text{Vcc} \pm 0.3 \text{ V.}$ Under this condition the current consumed is less than 5 μ A max. The device can be read with standard access time (tce) from either of these standby modes. During Embedded Algorithm operation, Vcc active current (lcc2) is required even $\overline{\text{CE}} =$ "H".

When using the RESET pin only, a CMOS standby mode is achieved with the RESET input held at Vss ± 0.3 V ($\overline{\text{CE}}$ = "H" or "L"). Under this condition the current consumed is less than 5 μ A max.

In the standby mode, the outputs are in the high impedance state, independent of the OE input.

Automatic Sleep Mode

There is a function called automatic sleep mode to restrain power consumption during read-out of MBM29LL800T/B data. This mode can be used effectively with an application requesting low power consumption such as handy terminals.

To activate this mode, MBM29LL800T/B automatically switches itself to low power mode when addresses remain stable for 150 ns. It is not necessary to control \overline{CE} , \overline{WE} , and \overline{OE} in this mode. During such mode, the current consumed is typically 75 nA (CMOS Level).

Standard address access timings provide new data when addresses are changed. While in sleep mode, output data is latched and always available to the system.

Output Disable

If the \overline{OE} input is at a logic high level (V_{IH}), output from the device is disabled. This will cause the output pins to be in a high impedance state.

Autoselect

The Autoselect mode allows the reading out of a binary code from the device and will identify its manufacturer and type. The intent is to allow programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. The Autoselect command may also be used to check the status of write-protected sectors. (See Tables 4.1 and 4.2.) This mode is functional over the entire temperature range of the device.

To activate this mode, the programming equipment must force V_{ID} (11.5 V to 12.5 V) on address pin A₉. Two identifier bytes may then be sequenced from the devices outputs by toggling address A₀ from V_{IL} to V_{IH}. All addresses are DON'T CARES except A₀, A₁, and A₆. (See Table 2 or Table 3.)

The manufacturer and device codes may also be read via the command register, for instances when the MBM29LL800T/B is erased or programmed in a system without access to high voltage on the A₉ pin. The command sequence is illustrated in Table 7, Command Definitions.

Byte 0 ($A_0 = V_{IL}$) represents the manufacture's code and byte 1 ($A_0 = V_{IH}$) represents the device identifier code. For the MBM29LL800T/B these two bytes are given in the Table 4.2. All identifiers for manufactures and device will exhibit odd parity with DQ7 defined as the parity bit. In order to read the proper device codes when executing the Autoselect, A1 must be VIL. (See Tables 2 or 3.) For device indentification in word mode (BYTE = VIH), DQ9 and DQ13 are equal to '1' and DQ8, DQ10 to DQ12, DQ14, and DQ15 are equal to '0'.

If $\overline{\mathsf{BYTE}} = \mathsf{V} \bowtie (\mathsf{for} \ \mathsf{byte} \ \mathsf{mode})$, the device code is EAH (for top boot block) or 6BH (for bottom boot block). If $\overline{\mathsf{BYTE}} = \mathsf{V} \bowtie (\mathsf{for} \ \mathsf{word} \ \mathsf{mode})$, the device code is 22EAH (for top boot block) or 226BH (for bottom boot block).

In order to determine which sectors are write protected, A_1 must be at V_{IH} while running through the sector addresses; if the selected sector is protected, a logical '1' output on DQ_0 ($DQ_0 = 1$).

	Туре		A ₁₂ to A ₁₈	A 6	A 1	Ao	A -1*1	Code (HEX)
Manufacture's	Code	Х	VIL	VIL	VIL	VIL	04H	
	MDMOOLLOOOT	Byte	V	VIL	VıL	ViH	VIL	EAH
	MBM29LL800T	Word	X			VIH	Х	22EAH
Device Code	MBM29LL800B	Byte	×	VIL	VIL	Mari	VIL	6BH
		Word				ViH	Х	226BH
Sector Protect	ion	Sector Addresses	VIL	VIH	VIL	VIL	01H*2	

Table 4.1 MBM29LL800T/B Sector Protection Verify Autoselect Code

 $\mathsf{Code} \, | \, \mathsf{DQ_{15}} \, | \, \mathsf{DQ_{14}} \, | \, \mathsf{DQ_{13}} \, | \, \mathsf{DQ_{12}} \, | \, \mathsf{DQ_{11}} \, | \, \mathsf{DQ_{10}} \, | \, \mathsf{DQ_9} \, | \, \mathsf{DQ_8} \, | \, \mathsf{DQ_7} \, | \, \mathsf{DQ_6} \, | \, \mathsf{DQ_5} \, | \, \mathsf{DQ_4} \, | \, \mathsf{DQ_3} \, | \, \mathsf{DQ_2} \, | \, \mathsf{DQ_1} \, | \, \mathsf{DQ_0} \,$ Type Manufacture's Code $A_{-1}/0$ 04H A-1 HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z (B) **EAH** MBM29LL800T (W) 22EAH Device Code (B) 6BH A-1 HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z MBM29LL800B (W) 226BH Sector Protection 01H A-1/0

Table 4.2 Expanded Autoselect Code Table

(B): Byte mode(W): Word mode

^{*1:} A-1 is for Byte mode.

^{*2:} Outputs 01H at protected sector addresses and outputs 00H at unprotected sector addresses.

Table 5 Sector Address Tables (MBM29LL800T)

Sector Address	A 18	A 17	A 16	A 15	A 14	A 13	A 12	(× 8) Address Range
SA0	0	0	0	0	Х	Х	Х	00000H to 0FFFFH
SA1	0	0	0	1	Х	Х	Х	10000H to 1FFFFH
SA2	0	0	1	0	Х	Х	Х	20000H to 2FFFFH
SA3	0	0	1	1	Х	Х	Х	30000H to 3FFFFH
SA4	0	1	0	0	Х	Х	Х	40000H to 4FFFFH
SA5	0	1	0	1	Х	Х	Х	50000H to 5FFFFH
SA6	0	1	1	0	Х	Х	Х	60000H to 6FFFFH
SA7	0	1	1	1	Х	Х	Х	70000H to 7FFFFH
SA8	1	0	0	0	Х	Х	Х	80000H to 8FFFFH
SA9	1	0	0	1	Х	Х	Х	90000H to 9FFFFH
SA10	1	0	1	0	Х	Х	Х	A0000H to AFFFFH
SA11	1	0	1	1	Х	Х	Х	B0000H to BFFFFH
SA12	1	1	0	0	Х	Х	Х	C0000H to CFFFFH
SA13	1	1	0	1	Х	Х	Х	D0000H to DFFFFH
SA14	1	1	1	0	Х	Х	Х	E0000H to EFFFFH
SA15	1	1	1	1	0	Х	Х	F0000H to F7FFFH
SA16	1	1	1	1	1	0	0	F8000H to F9FFFH
SA17	1	1	1	1	1	0	1	FA000H to FBFFFH
SA18	1	1	1	1	1	1	Х	FC000H to FFFFFH

Table 6 Sector Address Tables (MBM29LL800B)

Sector Address	A 18	A 17	A 16	A 15	A 14	A 13	A 12	(× 8) Address Range
SA0	0	0	0	0	0	0	Х	00000H to 03FFFH
SA1	0	0	0	0	0	1	0	04000H to 05FFFH
SA2	0	0	0	0	0	1	1	06000H to 07FFFH
SA3	0	0	0	0	1	0	Х	08000H to 0FFFFH
SA4	0	0	0	1	Х	Х	Х	10000H to 1FFFFH
SA5	0	0	1	0	Х	Х	Х	20000H to 2FFFFH
SA6	0	0	1	1	Х	Х	Х	30000H to 3FFFFH
SA7	0	1	0	0	Х	Х	Х	40000H to 4FFFFH
SA8	0	1	0	1	Х	Х	Х	50000H to 5FFFFH
SA9	0	1	1	0	Х	Х	Х	60000H to 6FFFFH
SA10	0	1	1	1	Х	Х	Х	70000H to 7FFFFH
SA11	1	0	0	0	Х	Х	Х	80000H to 8FFFFH
SA12	1	0	0	1	Х	Х	Х	90000H to 9FFFFH
SA13	1	0	1	0	Х	Х	Х	A0000H to AFFFFH
SA14	1	0	1	1	Х	Х	Х	B0000H to BFFFFH
SA15	1	1	0	0	Х	Х	Х	C0000H to CFFFFH
SA16	1	1	0	1	Х	Х	Х	D0000H to DFFFFH
SA17	1	1	1	0	Х	Х	Х	E0000H to EFFFFH
SA18	1	1	1	1	Х	Х	Х	F0000H to FFFFFH

Write

Device erasure and programming are accomplished via the command register. The command register is written by bringing \overline{WE} to V_{IL} , while \overline{CE} is at V_{IL} and \overline{OE} is at V_{IH} . Addresses are latched on the falling edge of \overline{CE} or \overline{WE} pulse, whichever occurs first. Standard microprocessor write timings are used. See Figures 6 and 7.

Refer to AC Write Characteristics and the Erase/Programming Waveforms for specific timing parameters.

Sector Protection

The MBM29LL800T/B features hardware sector protection. This feature will disable both program and erase operations in any number of sectors (0 through 18). The sector protection feature is enabled using programming equipment at the user's site. The device is shipped with all sectors unprotected.

To activate this mode, the programming equipment must force V_{ID} on address pin A_9 and control pin \overline{OE} , $\overline{CE} = V_{IL}$, $A_0 = A_6 = V_{IL}$, $A_1 = V_{IH}$. The sector addresses pins (A_{18} , A_{17} , A_{16} , A_{15} , A_{14} , A_{13} , and A_{12}) should be set to the sector to be protected. Tables 5 and 6 define the sector address for each of the nineteen (19) individual sectors. Programming of the protection circuitry begins on the falling edge of the \overline{WE} pulse and is terminated with the rising edge of the same. Sector addresses must be held constant during the \overline{WE} pulse. See figures 16 and 23 for sector protection waveforms and algorithm.

To verify programming of the protection circuitry, the programming equipment must force V_{ID} on address pin A_9 with \overline{CE} and \overline{OE} at V_{IL} and \overline{WE} at V_{IH} . Scanning the sector addresses (A_{18} , A_{17} , A_{16} , A_{15} , A_{14} , A_{13} , and A_{12}) while (A_6 , A_1 , A_0) = (0, 1, 0) will produce a logical "1" at device output DQ $_0$ for a protected sector. Otherwise the device will read 00H for an unprotected sector. In this mode, the lower order addresses, except for A_0 , A_1 , and A_6 are DON'T CARES. Address locations with $A_1 = V_{IL}$ are reserved for Autoselect manufacturer and device codes. A_1 requires to V_{IL} in byte mode.

It is also possible to determine if a sector is protected in the system by writing an Autoselect command. Performing a read operation at the address location XX02H, where the higher order addresses pins (A₁₈, A₁₇, A₁₆, A₁₅, A₁₄, A₁₃, and A₁₂) represents the sector address will produce a logical "1" at DQ₀ for a protected sector. See Tables 4.1 and 4.2 for Autoselect codes.

Temporary Sector Unprotection

This feature allows temporary unprotection of previously protected sectors of the MBM29LL800T/B devices in order to change data. The Sector Unprotection mode is activated by setting the RESET pin to high voltage (12 V). During this mode, formerly protected sectors can be programmed or erased by selecting the sector addresses. Once the 12 V is taken away from the RESET pin, all the previously protected sectors will be protected again. (See Figures 17 and 24.)

	Command Sequence		First Write		Seco Bu Write	IS	Third Write	Bus Cycle	Fourth Read/ Cyc	Write	Fifth Write		Sixth Write	
(Notes 1, 2	, 3, 5)	Req'd	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data
Read/Reset (Note 6)	Word /Byte	1	XXXXH	F0H	_	_	_	_	_	_	_	_	_	_
Read/Reset	Word	3	5555H	A A L I	2AAAH	EELI	5555H	ГОЦ	RA	DD				
(Note 6)	Byte	3	3 AAH 5555H 55H AAAAH F0H	KA	RD	_	_		_					
A. Honologi	Word	3	5555H	A A I I	2AAAH	E E L L	5555H	0011						
Autoselect	Byte	3	AAAAH	AAH	5555H	55H	AAAAH	90H	_	_	_	_		
Program	Word	4	5555H	A A I I	2AAAH	E E L L	5555H	A 01.1	DΛ	DD				
(Notes 3, 4)	Byte	4	AAAAH	AAH	5555H	55H	AAAAH	A0H	H PA	PD	_	_	_	
Chin Franc	Word	_	5555H	A A I I	2AAAH	E E L L	5555H	0011	5555H	A A I I	2AAAH	C C L L	5555H	4011
Chip Erase	Byte	6	AAAAH	AAH	5555H	55H	AAAAH	80H	ААААН	AAH	5555H	55H	AAAH	10H
Sector Erase	Word	_	5555H	A A I I	2AAAH	E E L L	5555H	0011	5555H	A A I I	2AAAH	C C L L	C	2011
(Note 3)	Byte	6	AAAAH	AAH	5555H	55H	AAAAH	80H	ААААН	AAH	5555H	- 55H	SA	30H
Sector Erase Suspend	Word /Byte	1	XXXXH	вон	_	_	_	_	_	_	_	_	_	_
Sector Erase	Word	1	ххххн	30H			_		_		_			

Table 7 MBM29LL800T/B Command Definitions

- **Notes:** 1. Address bits A₁₅ to A₁₈ = X = "H" or "L" for all address commands except or Program Address (PA) and Sector Address (SA).
 - 2. Bus operations are defined in Tables 2 and 3.
 - 3. RA = Address of the memory location to be read.
 - PA = Address of the memory location to be programmed. Addresses are latched on the falling edge of the \overline{WE} pulse.
 - SA = Address of the sector to be erased. The combination of A₁₈, A₁₇, A₁₆, A₁₅, A₁₄, A₁₃, and A₁₂ will uniquely select any sector.
 - 4. RD = Data read from location RA during read operation.
 - PD = Data to be programmed at location PA. Data is latched on the rising edge of WE.
 - 5. The system should generate the following address patterns:

Word Mode: 5555H or 2AAAH to addresses Ao to A14

Byte Mode: AAAAH or 5555H to addresses A-1, Ao to A14

6. Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.

Command Definitions

Resume

/Byte

Device operations are selected by writing specific address and data sequences into the command register. Writing incorrect address and data values or writing them in an improper sequence will reset the device to the read mode. Table 7 defines the valid register command sequences. Note that the Erase Suspend (B0H) and Erase Resume (30H) commands are valid only while the Sector Erase operation is in progress. Moreover both Read/Reset commands are functionally equivalent, resetting the device to the read mode. Please note that commands are always written at DQ_0 to DQ_7 and DQ_8 to DQ_{15} bits are ignored.

Read/Reset Command

In order to return from Autoselect mode or Exceeded Timing Limits ($DQ_5 = 1$) to read mode, the read/reset operation is initiated by writing the Read/Reset command sequence into the command register. Microprocessor read cycles retrieve array data from the memory. The device remains enabled for reads until the command register contents are altered.

The device will automatically power-up in the read/reset state. In this case, a command sequence is not required to read data. Standard microprocessor read cycles will retrieve array data. This default value ensures that no spurious alteration of the memory contents occurs during the power transition. Refer to the AC Read Characteristics and Waveforms for specific timing parameters. (See Figure 5.2.)

Autoselect Command

Flash memories are intended for use in applications where the local CPU alters memory contents. As such, manufactures and device codes must be accessible while the device resides in the target system. PROM programmers typically access the signature codes by raising A₉ to a high voltage. However, multiplexing high voltage onto the address lines is not generally desired system design practice.

The device contains an Autoselect command operation to supplement traditional PROM programming methodology. The operation is initiated by writing the Autoselect command sequence into the command register. Following the last command write, a read cycle from address 00H retrieves the manufacture code of 04H. A read cycle from address 01H for \times 16 (02H for \times 8) retrieves the device code (MBM29LL800T = EAH and MBM29LL800B = 6BH for \times 8 mode; MBM29LL800T = 22EAH and MBM29LL800B = 226BH for \times 16 mode). (See Tables 4.1 and 4.2.) All manufactures and device codes will exhibit odd parity with DQ7 defined as the parity bit.

Sector state (protection or unprotection) will be indicated by address 02H for \times 16 (04H for \times 8). Scanning the sector addresses (A₁₈, A₁₇, A₁₆, A₁₅, A₁₄, A₁₃, and A₁₂) while (A₆, A₁, A₀) = (0, 1, 0) will produce a logical "1" at device output DQ₀ for a protected sector. The programming verification should be perform margin

mode verification on the protected sector. (See Tables 2 and 3.)

To terminate the operation, it is necessary to write the Read/Reset command sequence into the register, and also to write the Autoselect command during the operation, by executing it after writing the Read/Reset command sequence.

Word/Byte Programming

The device is programmed on a byte-by-byte (or word-by-word) basis. Programming is a four bus cycle operation. There are two "unlock" write cycles. These are followed by the program set-up command and data write cycles. Addresses are latched on the falling edge of \overline{CE} or \overline{WE} , whichever happens later and the data is latched on the rising edge of \overline{CE} or \overline{WE} , whichever happens first. The rising edge of the last \overline{CE} or \overline{WE} (whichever happens first) begins programming. Upon executing the Embedded Program Algorithm command sequence, the system is not required to provide further controls or timings. The device will automatically provide adequate internally generated program pulses and verify the programmed cell margin. (See Figures 6 and 7.)

The automatic programming operation is completed when the data on DQ_7 is equivalent to data written to this bit at which time the device return to the read mode and addresses are no longer latched. (See Table 8, Hardware Sequence Flags.) Therefore, the device requires that a valid address be supplied by the system at this time. Hence, \overline{Data} Polling must be performed at the memory location which is being programmed.

Any commands written to the chip during this period will be ignored. If hardware reset occures during the programming operation, it is impossible to guarantee whether the data being written is correct or not.

Programming is allowed in any sequence and across sector boundaries. Beware that a data "0" cannot be programmed back to a "1". Attempting to do so may either hang up the device or result in an apparent success according to the data polling algorithm but a read from read/reset mode will show that the data is still "0". Only erase operations can convert "0"s to "1"s.

Figure 19 illustrates the Embedded Program™ Algorithm using typical command strings and bus operations.

Chip Erase

Chip erase is a six-bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the chip erase command.

Chip erase does not require the user to program the device prior to erase. Upon executing the Embedded Erase Algorithm command sequence the device will automatically program and verify the entire memory for an all zero data pattern prior to electrical erase. (Preprogram Function.) The system is not required to provide any controls or timings during these operations.

The automatic erase begins on the rising edge of the last $\overline{\text{WE}}$ pulse in the command sequence and terminates when the data on DQ₇ is "1" (See Write Operation Status section.) at which time the device returns to read mode. (See Figure 8.)

Figure 20 illustrates the Embedded Erase™ Algorithm using typical command strings and bus operations.

Sector Erase

Sector erase is a six-bus cycle operation. There are two "unlock" write cycles, followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the Sector Erase command. The sector address (any address location within the desired sector) is latched on the falling edge of \overline{WE} , while the command (Data = 30H) is latched on the rising edge of \overline{WE} . After a time-out of 50 μ s from the rising edge of the last sector erase command, the sector erase operation will begin.

Multiple sectors may be erased concurrently by writing six-bus cycle operations on Table 7. This sequence is followed with writes of the Sector Erase command to addresses in other sectors desired to be concurrently erased. The time between writes must be less than 50 μ s otherwise that command will not be accepted and erasure will start. It is recommended that processor interrupts be disabled during this time to guarantee this condition. The interrupts can be re-enabled after the last Sector Erase command is written. A time-out of 50 μ s from the rising edge of the last \overline{WE} will initiate the execution of the Sector Erase command(s). If another falling edge of the \overline{WE} occurs within the 50 μ s time-out window the timer is reset. Monitor DQ3 to determine if the sector erase timer window is still open. (See section DQ3, Sector Erase Timer.) Any command other than Sector Erase or Erase Suspend during this time-out period will reset the device to the read mode, ignoring the previous command string. Resetting the device once excution has begun will corrupt the data in the sector. In that case, restart the erase on those sectors and allow them to complete. (Refer to the Write Operation Status section for Sector Erase Timer operation.) Loading the sector erase buffer may be done in any sequence and with any number of sectors (0 to 18).

Sector erase does not require the user to program the device prior to erase. The device automatically programs all memory locations in the sector(s) to be erased prior to electrical erase (Preprogram Function). When erasing a sector or sectors the remaining unselected sectors are not affected. The system is not required to provide any controls or timings during these operations. (See Figure 8.)

The automatic sector erase begins after the 50 μ s time out from the rising edge of the \overline{WE} pulse for the last sector erase command pulse and terminates when the data on DQ τ is "1" (See Write Operation Status section) at which time the device returns to the read mode. \overline{Data} polling must be performed at an address within any of the sectors being erased.

Figure 20 illustrates the Embedded Erase™ Algorithm using typical command strings and bus operations.

Erase Suspend/Resume

The Erase Suspend command allows the user to interrupt a Sector Erase operation and then perform data reads from or program to a sector not being erased. This command is applicable ONLY during the Sector Erase operation which includes the time-out period for sector erase. The Erase Suspend command will be ignored if written during the Chip Erase operation or Embedded Program Algorithm. Writting the Erase Suspend command during the Sector Erase time-out results in immediate termination of the time-out period and suspension of the erase operation.

Writing the Erase Resume command resumes the erase operation. The addresses are "DON'T CARES" when writing the Erase Suspend or Erase Resume commands.

When the Erase Suspend command is written during the Sector Erase operation, the device will take a maximum of 20 μ s to suspend the erase operation. When the devices have entered the erase-suspended mode, the RY/BY output pin and the DQ $_7$ bit will be at logic "1", and DQ $_6$ will stop toggling. The user must use the address of the erasing sector for reading DQ $_6$ and DQ $_7$ to determine if the erase operation has been suspended. Further writes of the Erase Suspend command are ignored.

When the erase operation has been suspended, the device defaults to the erase-suspend-read mode. Reading data in this mode is the same as reading from the standard read mode except that the data must be read from sectors that have not been erase-suspended. Successively reading from the erase-suspended sector while the device is in the erase-suspend-read mode will cause DQ₂ to toggle. (See the section on DQ₂.)

After entering the erase-suspend-read mode, the user can program the device by writing the appropriate command sequence for Program. This Program mode is known as the erase-suspend-program mode. Again, programming in this mode is the same as programming in the regular Program mode except that the data must be programmed to sectors that are not erase-suspended. Successively reading from the erase-suspended sector while the devices are in the erase-suspend-program mode will cause DQ_2 to toggle. The end of the erase-suspended Program operation is detected by the RY/BY output pin, \overline{Data} polling of DQ_7 , or the Toggle Bit (DQ_6) which is the same as the regular Program operation. Note that DQ_7 must be read from the Program address while DQ_6 can be read from any address.

To resume the operation of Sector Erase, the Resume command (30H) should be written. Any further writes of the Resume command at this point will be ignored. Another Erase Suspend command can be written after the chip has resumed erasing.

Address Sensitivity of Write Status Flags

Detailed in Table 8 are all the status flags that can be used to check the status of the device for current mode operation. During sector erase, the part provides the status flags automatically to the I/O ports. The information on DQ2 is address sensitive. This means that if an address from an erasing sector is consecutively read, then the DQ2 bit will toggle. However, DQ2 will not toggle if an address from a non-erasing sector is consecutively read. This allows the user to determine which sectors are erasing and which are not.

Once erase suspend is entered, address sensitivity still applies. If the address of a non-erasing sector (that is, one available for read) is provided, then stored data can be read from the device. If the address of an erasing sector (that is, one unavailable for read) is applied, the device will output its status bits.

Write Operation Status

Table 8 Hardware Sequence Flags

		Status	DQ ₇	DQ ₆	DQ ₅	DQ₃	DQ ₂	RY/BY
	Byte and \	Word Programming	DQ ₇	Toggle	0	0	No Toggle	0
	Program/Erase in Anto-Erase			Toggle	0	1	(Note 1)	0
In Progress	n Progress Erase Suspend Mode	Erase Sector Address	1	No Toggle	0	0	Toggle (Note 1)	1
		Non-Erase Sector Address	Data	Data	Data	Data	Data (Note 2)	1
	Program i	ram in Erase Suspend		Toggle	0	0	1 (Note 2)	0
Exceeded	Byte and '	Word Programming	DQ ₇	Toggle	1	0	No Toggle	0
Time	Program/E	Erase in Anto-Erase	0	Toggle	1	1	(Note 3)	0
Limits	Program i	n Erase Suspend	DQ ₇	Toggle	1	0	No Toggle	0

Notes: 1. DQ₂ can be toggled when the sector address applied is that of an erasing or erase suspended sector. Coversely, DQ₂ cannot be toggled when the sector address applied is that of a non-erasing or non-erase suspended sector. DQ₂ is therefore used to determine which sectors are erasing or erase suspended and which are not.

- 2. These status flags apply when outputs are read from the address of a non-erase-suspended sector.
- 3. If DQ₅ is high (exceeded timing limits), successive reads from a problem sector will cause DQ₂ to toggle.
- 4. DQo and DQ1 are reserved pins for future use.
- 5. DQ4 is Fujitsu internal use only.

DQ₇

Data Polling

The MBM29LL800T/B device features \overline{Data} Polling as a method to indicate to the host that the Embedded Algorithms are in progress or completed. During the Embedded Program Algorithm, an attempt to read the devices will produce the complement of the data last written to DQ_7 . Upon completion of the Embedded Program Algorithm, an attempt to read the device will produce the true data last written to DQ_7 . During the Embedded Erase Algorithm, an attempt to read the device will produce a "0" at the DQ_7 output. Upon completion of the Embedded Erase Algorithm an attempt to read the device will produce a "1" at the DQ_7 output. The flowchart for \overline{Data} Polling (DQ_7) is shown in Figure 21.

For chip erase and sector erase, \overline{Data} Polling is valid after the rising edge of the sixth \overline{WE} pulse in the six-write pulse sequence. \overline{Data} Polling must be performed at a sector address within any of the sectors being erased and not at a protected sector. Otherwise, the status may not be valid. Once the Embedded Algorithm operation is close to being completed, the MBM29LL800T/B data pins ($\overline{DQ_7}$) may change asynchronously while the output enable (\overline{DE}) is asserted low. This means that the device is driving status information on $\overline{DQ_7}$ at one instant of time and then that byte's valid data at the next instant of time. Depending on when the system samples the $\overline{DQ_7}$ output, it may read the status or valid data. Even if the device has completed the Embedded Program Algorithm operation and $\overline{DQ_7}$ has a valid data, the data outputs on $\overline{DQ_0}$ to $\overline{DQ_0}$ may be still invalid. The valid data on $\overline{DQ_0}$ to $\overline{DQ_7}$ will be read on successive read attempts.

The Data Polling feature is only active during the Embedded Programming Algorithm, Embedded Erase Algorithm or sector erase time-out. (See Table 8.)

See Figure 9 for the Data Polling timing specifications and diagrams.

DQ_6

Toggle Bit

The MBM29LL800T/B also feature the "Toggle Bit" as a method to indicate to the host system that the Embedded Algorithms are in progress or completed.

During an Embedded Program or Erase Algorithm cycle, successive attempts to read (\overline{OE} toggling) data from the device will result in DQ₆ toggling between one and zero. Once the Embedded Program or Erase Algorithm cycle is completed, DQ₆ will stop toggling and valid data can be read on the next successive attempts. During programming, the Toggle Bit is valid after the rising edge of the fourth \overline{WE} pulse in the four write pulse sequence. For chip erase and sector erase, the Toggle Bit is valid after the rising edge of the sixth \overline{WE} pulse in the six-write pulse sequence. The Toggle Bit is active during the sector time out.

In programming, if the sector being written to is protected, the toggle bit will toggle for about 2 μ s and then stop toggling without the data having changed. In erase, the device will erase all the selected sectors except for the ones that are protected. If all selected sectors are protected, the chip will toggle the toggle bit for about 100 μ s and then drop back into read mode, having changed none of the data.

Either $\overline{\text{CE}}$ or $\overline{\text{OE}}$ toggling will cause the DQ6 to toggle. In addition, an Erase Suspend/Resume command will cause the DQ6 to toggle.

See Figure 10 and Figure 22 for the Toggle Bit timing specifications and diagrams.

DQ_5

Exceeded Timing Limits

 DQ_5 will indicate if the program or erase time has exceeded the specified limits (internal pulse count). Under these conditions DQ_5 will produce a "1". This is a failure condition which indicates that the program or erase cycle was not successfully completed. \overline{Data} Polling DQ_7 , DQ_6 is the only operating function of the device under this condition. The \overline{CE} circuit will partially power down the device under these conditions (to approximately 2 mA). The \overline{OE} and \overline{WE} pins will control the output disable functions as described in Tables 2 and 3.

The DQ₅ failure condition may also appear if a user tries to program a non blank location without erasing. In this case the device locks out and never completes the Embedded Algorithm operation. Hence, the system never reads a valid data on DQ₂ and DQ₆ never stops toggling. Once the device has exceeded timing limits, the DQ₅ bit will indicate a "1." Please note that this is not a device failure condition since the device was incorrectly used. If this occurs, reset the device with command sequence.

DQ_3

Sector Erase Timer

After the completion of the initial sector erase command sequence the sector erase time-out will begin. DQ₃ will remain low until the time-out is complete. Data Polling and Toggle Bit are valid after the initial sector erase command sequence.

If \overline{Data} Polling or the Toggle Bit I indicates the device has been written with a valid erase command, DQ₃ may be used to determine if the sector erase timer window is still open. If DQ₃ is high ("1") the internally controlled erase cycle has begun; attempts to write subsequent commands to the device will be ignored until the erase operation is completed as indicated by \overline{Data} Polling or Toggle Bit. If DQ₃ is low ("0"), the device will accept additional sector erase commands. To insure the command has been accepted, the system software should check the status of DQ₃ prior to and following each subsequent sector erase command. If DQ₃ is high on the second status check, the command may not have been accepted.

See Table 8: Hardware Sequence Flags.

DQ_2

Toggle Bit II

This toggle bit II, along with DQ6, can be used to determine whether the device is in the Embedded Erase Algorithm or in Erase Suspend.

Successive reads from the erasing sector will cause DQ_2 to toggle during the Embedded Erase Algorithm. If the device is in the erase-suspended-read mode, successive reads from the erase-suspended sector will cause DQ_2 to toggle. When the device is in the erase-suspended-program mode, successive reads from the byte address of the non-erase suspended sector will indicate a logic "1" at DQ_2 .

 DQ_6 is different from DQ_2 in that DQ_6 toggles only when the standard program or Erase, or Erase Suspend Program operation is in progress.

For example, DQ₂ and DQ₆ can be used together to determine if the erase-suspend-read mode is in progress. (DQ₂ toggles while DQ₆ does not.) See also Table 9 and Figure 18.

Furthermore, DQ2 can also be used to determine which sector is being erased. When the device is in the erase mode, DQ2 toggles if this bit is read from an erasing sector.

Mode	DQ ₇	DQ ₆	DQ ₂
Program	DQ ₇	Toggles	1
Erase	0	Toggles	Toggles
Erase-Suspend Read (Erase-Suspended Sector) (Note 1)	1	1	Toggles
Erase-Suspend Program	DQ ₇ (Note 2)	Toggles	1 (Note 2)

Table 9 Toggle Bit Status

Notes: 1. These status flags apply when outputs are read from a sector that has been erase suspended.

2. These status flags apply when outputs are read from the byte/word address of the non-erase suspended sector.

RY/BY

Ready/Busy Pin

The MBM29LL800T/B provides a RY/BY open-drain output pin as a way to indicate to the host system that the Embedded Algorithms are either in progress or has been completed. If the output is low, the device is busy with either a program or erase operation. If the output is high, the device is ready to accept any read/write or erase operation. When the RY/BY pin is low, the devices will not accept any additional program or erase commands with the exception of the Erase Suspend command. If the MBM29LL800T/B is placed in an Erase Suspend mode, the RY/BY output will be high, by means of connecting with a pull-up resister to Vcc.

During programming, the RY/BY pin is driven low after the rising edge of the fourth WE pulse. During an erase operation, the RY/BY pin is driven low after the rising edge of the sixth WE pulse. The RY/BY pin will indicate a busy condition during the RESET pulse. See Figure 11 and 12 for a detailed timing diagram. The RY/BY pin is pulled high in standby mode.

Since this is an open-drain output, RY/BY pins can be tied together in parallel with a pull-up resistor to Vcc.

RESET

Hardware Reset Pin

The MBM29LL800T/B device may be reset by driving the RESET pin to V_{IL} . The RESET pin has a pulse requirement and has to be kept low (V_{IL}) for at least 500 ns in order to properly reset the internal state machine. Any operation in the process of being executed will be terminated and the internal state machine will be reset to the read mode 20 μ s after the RESET pin is driven low. Furthermore, once the RESET pin goes high, the device requires an additional $t_{RH} = 50$ ns before it allows read access. When the RESET pin is low, the device will be in the standby mode for the duration of the pulse and all the data output pins will be tri-stated. If a hardware reset occurs during a program or erase operation, the data at that particular location will be corrupted. Please note that the RY/BY output signal should be ignored during the RESET pulse. Refer to Figure 12 for the timing diagram. Refer to Temporary Sector Unprotection for additional functionality.

If hardware reset occurs during Embedded Erase Algorithm, there is a possibility that the erasing sector(s) will need to be erased again before they can be programmed.

Word/Byte Configuration

The $\overline{\text{BYTE}}$ pin selects the byte (8-bit) mode or word (16-bit) mode for the MBM29LL800T/B device. When this pin is driven high, the device operates in the word (16-bit) mode. The data is read and programmed at DQ₀ to DQ₁₅. When this pin is driven low, the device operates in byte (8-bit) mode. Under this mode, DQ₁₅/A₋₁ pin becomes the lowest address bit and DQ₈ to DQ₁₄ bits are tri-stated. However, the command bus cycle is always an 8-bit operation and hence commands are written at DQ₀ to DQ₇ and DQ₈ to DQ₁₅ bits are ignored. Refer to Figures 13 and 14 for the timing diagrams.

Data Protection

The MBM29LL800T/B is designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transitions. During power up the device automatically resets the internal state machine in the Read mode. Also, with its control register architecture, alteration of the memory contents only occurs after successful completion of specific multi-bus cycle command sequence.

The device also incorporates several features to prevent inadvertent write cycles resulting form Vcc power-up and power-down transitions or system noise.

Write Pulse "Glitch" Protection

Noise pulses of less than 5 ns (typical) on \overline{OE} , \overline{CE} , or \overline{WE} will not change the command registers.

Logical Inhibit

Writing is inhibited by holding any one of $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IH}$, or $\overline{WE} = V_{IH}$. To initiate a write, \overline{CE} and \overline{WE} must be a logical zero while \overline{OE} is a logical one.

Power-up Write Inhibit

Power-up of the devices with $\overline{WE} = \overline{CE} = V_{\parallel}$ and $\overline{OE} = V_{\parallel}$ will not accept commands on the rising edge of \overline{WE} . The internal state machine is automatically reset to read mode on power-up.

Handling of SON Package

The metal portion of marking side is connected with internal chip electrically. Please pay attention not to occur electrical connection during operation. In worst case, it may be caused permanent damage to device or system by excessive current.

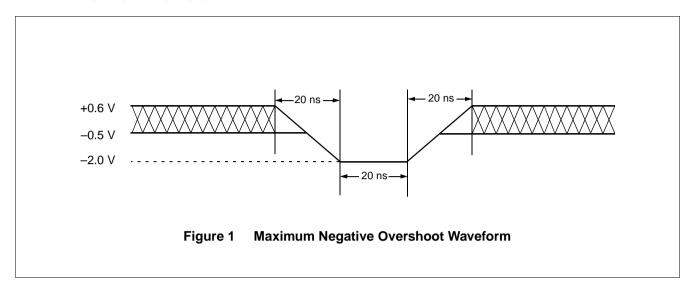
■ ABSOLUTE MAXIMUM RATINGS

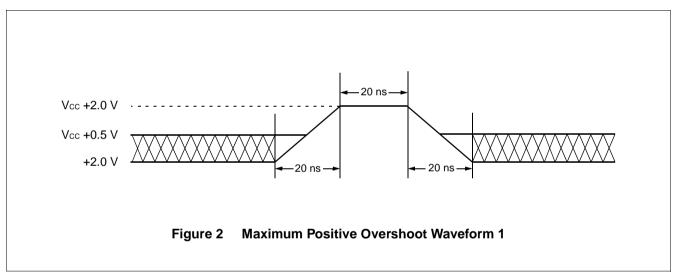
Storage Temperature	–55°C to +125°C
Ambient Temperature with Power Applied	
Voltage with respect to Ground All pins except A ₉ , \overline{OE} , and \overline{RESET} (Note 1)	0.5 V to +Vcc +0.5 V
Vcc (Note 1)	–0.5 V to +5.5 V
A ₉ , $\overline{\text{OE}}$, and $\overline{\text{RESET}}$ (Note 2)	–0.5 V to +13.0 V

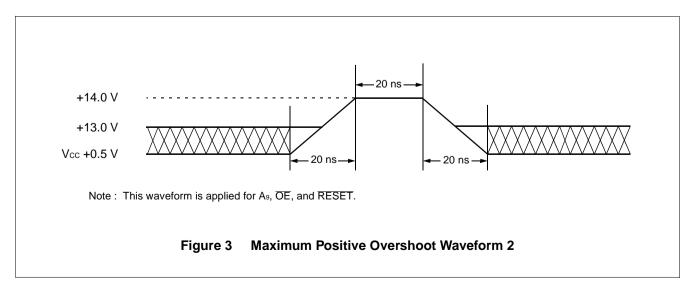
- **Notes:** 1. Minimum DC voltage on input or I/O pins are -0.5 V. During voltage transitions, inputs may negative overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on output and I/O pins are Vcc +0.5 V. During voltage transitions, outputs may positive overshoot to Vcc +2.0 V for periods of up to 20 ns.
 - 2. Minimum DC input voltage on A₉, OE, and RESET pins are −0.5 V. During voltage transitions, A₉, OE, and RESET pins may negative overshoot V_{SS} to −2.0 V for periods of up to 20 ns. Maximum DC input voltage on A₉, OE, and RESET pins are +13.0 V which may positive overshoot to 14.0 V for periods of up to 20 ns. Voltage difference between input voltage and supply voltage (V_{IN} − V_{CC}) do not exceed 9 V.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum rating conditions. Do not exceed these ratings.

■ RECOMMENDED OPERATING RANGES


Operating ranges define those limits between which the functionality of the device is quaranteed.


WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.


Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

■ MAXIMUM OVERSHOOT

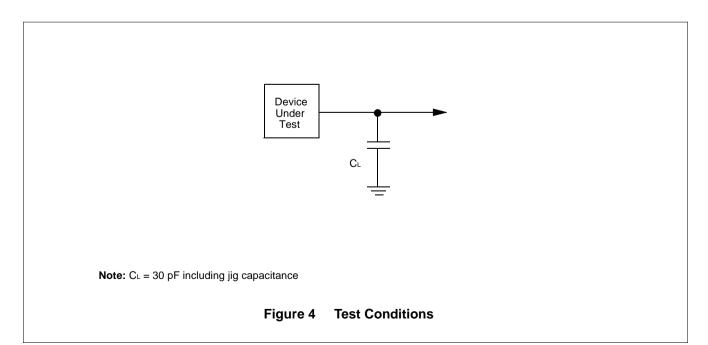
■ DC CHARACTERISTICS

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
lu	Input Leakage Current	VIN = Vss to Vcc, Vcc = Vcc Max.	-1.0	+1.0	μΑ
Іьо	Output Leakage Current	Vout = Vss to Vcc, Vcc = Vcc Max	1.0	+1.0	μΑ
Інт	A ₉ , OE, RESET Inputs Leakage Current	Vcc = Vcc Max., A ₉ , OE, RESET = 12.5 V	_	35	μA
	Vcc Active Current (Note 1)	Byte		10	- mA
Icc ₁		$\overline{CE} = V_{IL}, \overline{OE} = V_{IH}$ Word	-	15	
Icc2	Vcc Active Current (Note 2)	CE = VIL, OE = VIH	_	35	mA
Icc3	Vcc Current (Standby)	Vcc = Vcc Max., $\overline{\text{CE}}$ = Vcc ± 0.3 V RESET = Vcc ± 0.3 V	_	1	μA
Icc4	Vcc Current during Reset (Standby)	Vcc = Vcc Max., RESET = Vss±0.3 V	_	1	μA
Icc5	Vcc Current (Automatic Sleep Mode) (Note 3)	Vcc = Vcc Max., RESET = Vcc ±0.3 V, CE = Vss ±0.3 V, Vin = Vcc ±0.3 V or Vss ±0.3 V	_	1	μA
VIL	Input Low Level	_	-0.5	0.4	V
VIH	Input High Level	_	Vcc-0.4	Vcc + 0.3	V
VID	Voltage for Autoselect and Sector Protection (A ₉ , OE, RESET) (Note 4)	_	11.5	12.5	V
Vol	Output Low Voltage Level	IoL = 0.1 mA, Vcc = Vcc Min.	_	0.3	V
V _{OH1}	Output High Voltage Level	Iон = −2.0 mA, Vcc = Vcc Min.	2.4	_	V
V _{OH2}	Output High Voltage Level	Іон = −100 μA, Vcc = Vcc Min.	Vcc - 0.3	_	V

Notes: 1. The lcc current listed includes both the DC operating current and the frequency dependent component (at 5 MHz). The frequency component typically is 1.5 mA/MHz, with $\overline{\text{OE}}$ at V_IH.

- 2. lcc active while Embedded Erase or Embedded Program is in progress.
- 3. Automatic sleep mode enables the low power mode when address remain stable for 150 ns.
- 4. (VID VCC) do not exceed 9 V.

■ AC CHARACTERISTICS


• Read Only Operations Characteristics

Parameter Symbols		Description	Test Setup		-15 (Note)	Unit
JEDEC	Standard	•	•		(NOte)	
tavav	t RC	Read Cycle Time	_	Min.	150	ns
t avqv	tacc	Address to Output Delay	CE = VIL OE = VIL	Max.	150	ns
t ELQV	t ce	Chip Enable to Output Delay	OE = V _{IL}	Max.	150	ns
t GLQV	t oe	Output Enable to Output Delay	_	Max.	55	ns
t EHQZ	t DF	Chip Enable to Output HIGH-Z	_	Max.	40	ns
t GHQZ	t DF	Output Enable to Output HIGH-Z	_	Max.	40	ns
taxqx	tон	Output Hold Time from Address, CE or OE, whichever Occurs First	_	Min.	0	ns
_	t READY	RESET Pin Low to Read Mode	_	Max.	20	μs
_	telfl telfh	CE or BYTE Switching Low or High	_	Max.	5	ns

Note: Test Conditions: Output Load: 30 pF only

Input rise and fall times: 5 ns Input pulse levels: 0.0 V to Vcc Timing measurement reference level

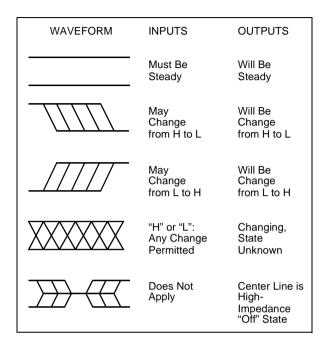
Input: 1/2 Vcc Output: 1/2 Vcc

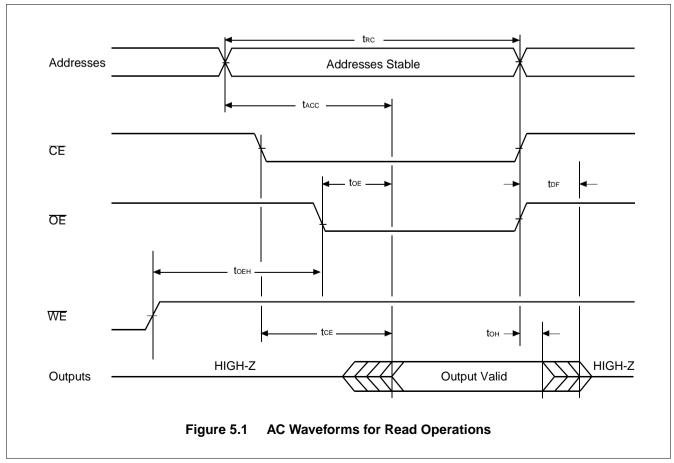
• Write (Erase/Program) Operations

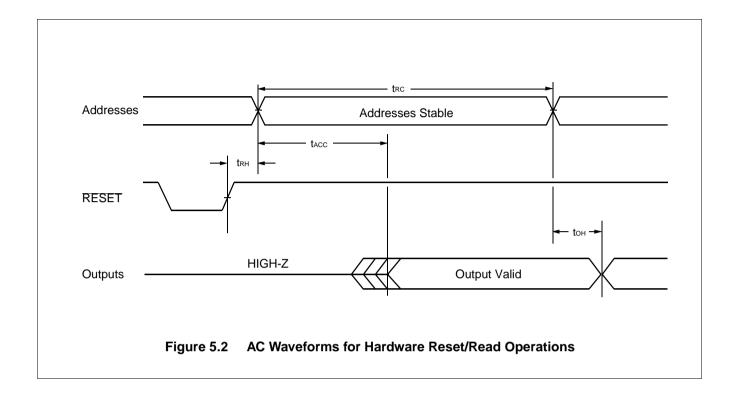
Paramete	r Symbols							
JEDEC	Standard	Description				-15	Unit	
t avav	twc	Write Cycle Time			Min.	150	ns	
t avwl	t AS	Address Setup	Time		Min.	0	ns	
twlax	t AH	Address Hold T	ime		Min.	65	ns	
t DVWH	t DS	Data Setup Tim	е		Min.	65	ns	
t whdx	t DH	Data Hold Time			Min.	0	ns	
_	toes	Output Enable S	Setup Time		Min.	0	ns	
	4	Output Enable Hold Time Read Toggle and Data Polling		Min.	0	ns		
_	t oeh			Min.	10	ns		
t GHWL	t GHWL	Read Recover Time before Write (OE High to WE Low)			Min.	0	ns	
t GHEL	t GHEL	Read Recover Time before Write (OE High to CE Low)			Min.	0	ns	
t ELWL	tcs	CE Setup Time			Min.	0	ns	
twlel	tws	WE Setup Time			Min.	0	ns	
t wheh	tсн	CE Hold Time	CE Hold Time		Min.	0	ns	
t EHWH	twн	WE Hold Time	WE Hold Time		Min.	0	ns	
t wLWH	t wp	Write Pulse Width		Min.	65	ns		
t ELEH	t cp	CE Pulse Width			Min.	65	ns	
t whwL	t wph	Write Pulse Width High			Min.	35	ns	
t ehel	t CPH	CE Pulse Width	High		Min.	35	ns	
t	twhwh1	4	Programming O	noration	Byte	Tun	9	
t whwh1		Frogramming O	peration	Word	Тур.	16	μs	
t whwh2	twhwh2	Sector Erase Operation (Note 1)		Тур.	1	sec		
_	t eoe	Delay Time from Embedded Output Enable		Max.	150	ns		
_	tvcs	Vcc Setup Time		Min.	50	μs		
_	t vlht	Voltage Transition Time (Note 2)		Min.	4	μs		
_	t wpp	Write Pulse Width (Note 2)		Min.	100	μs		
	toesp	OE Setup Time to WE Active (Note 2)		Min.	4	μs		
_	tcsp	CE Setup Time to WE Active (Note 2)		Min.	4	μs		
_	t RB	Write Recover Time from RY/BY			Min.	0	ns	

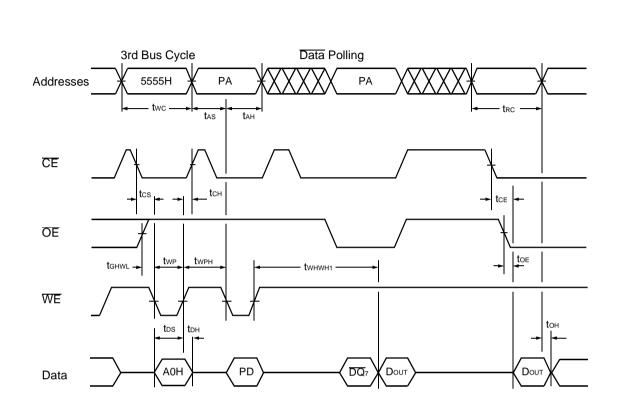
(Continued)

(Continued)

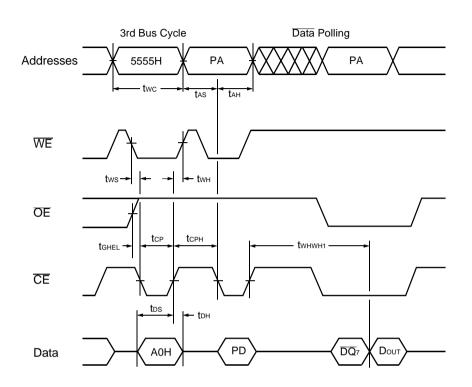

Parameter Symbols			45	11:4:4	
JEDEC	Standard	Description	-15	Unit	
_	t RH	RESET High Time before Read	Min.	50	ns
_	t BUSY	Program/Erase Valid to RY/BY Delay	Min.	90	ns
_	t EOE	Delay Time from Embedded Output Enable	Max.	150	ns
_	telfl/telfh	CE to BYTE Switching Low or High	Max.	5	ns
_	t FLQZ	BYTE Switching Low to Output HIGH-Z	Max.	40	ns
_	t FHQV	BYTE Switching High to Output Active	Min.	40	ns
_	t vidr	Rise Time to V _{ID} (Note 2)	Min.	500	ns
_	t RP	RESET Pulse Width	Min.	500	ns


Notes: 1. This does not include the preprogramming time.


2. This timing is for Sector Protection operation.

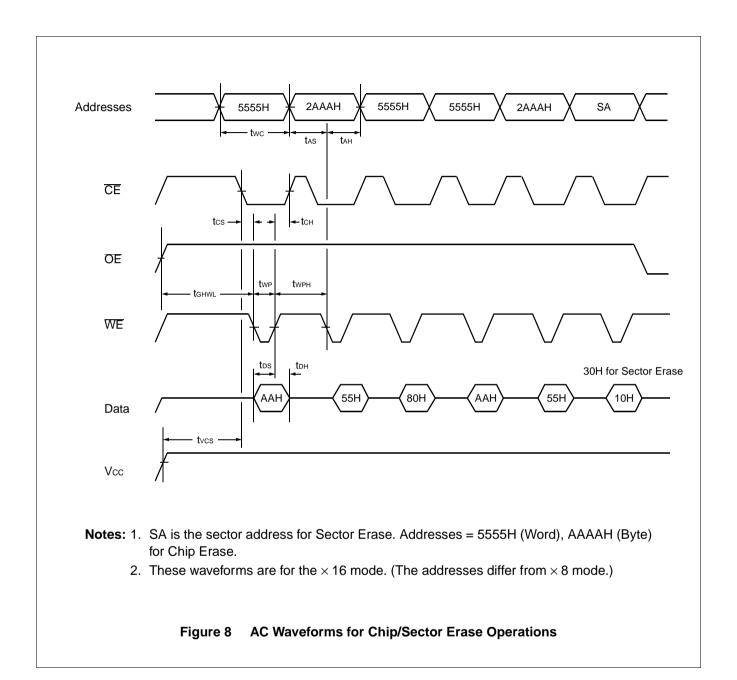

■ SWITCHING WAVEFORMS

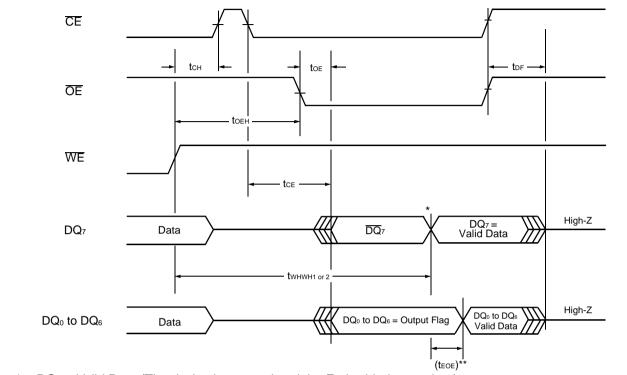
Key to Switching Waveforms



Notes: 1. PA is address of the memory location to be programmed.

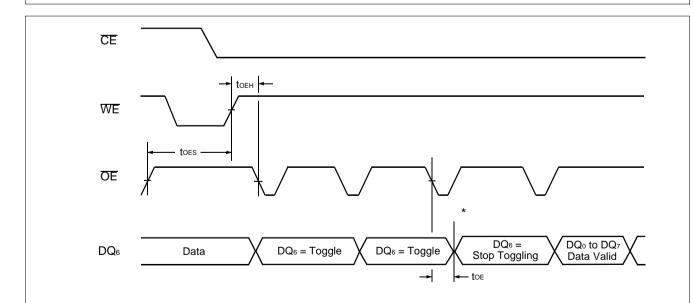
- 2. PD is data to be programmed at word address.
- 3. $\overline{DQ_7}$ is the output of the complement of the data written to the device.
- 4. Dout is the output of the data written to the device.
- 5. Figure indicates last two bus cycles out of four bus cycle sequence.
- 6. These waveforms are for the \times 16 mode. (The addresses differ from \times 8 mode.)

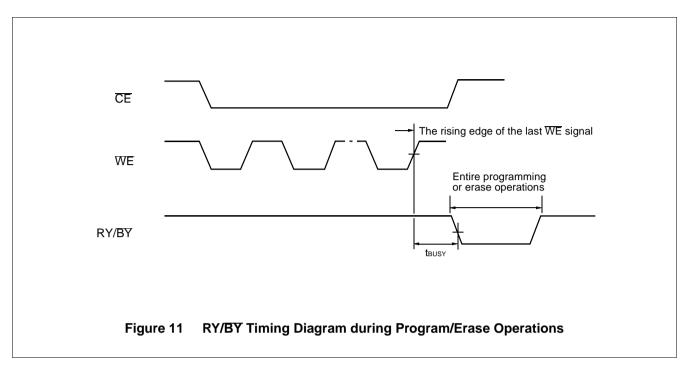

Figure 6 Alternate WE AC Waveforms for Program Operations

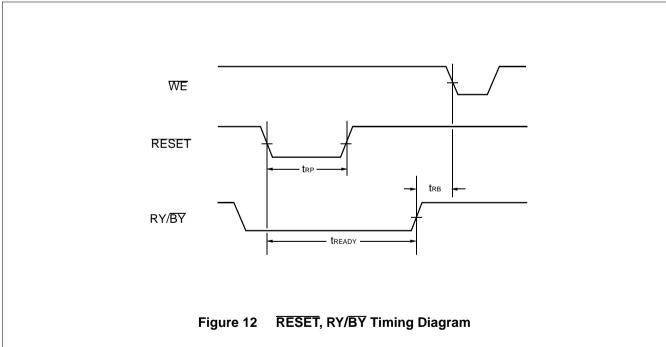


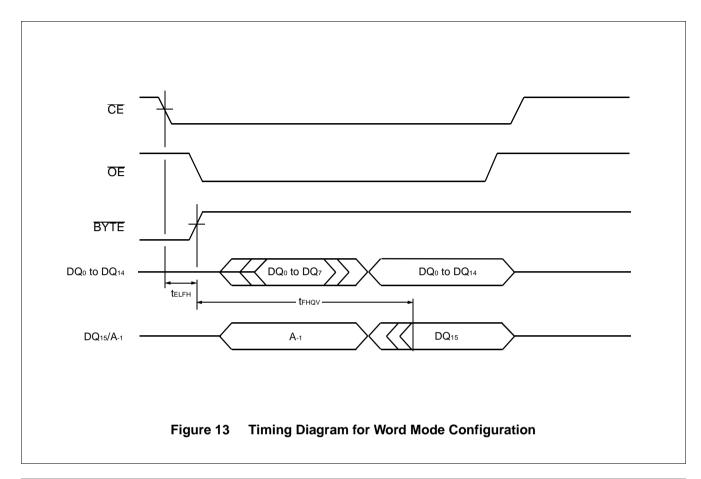
Notes: 1. PA is address of the memory location to be programmed.

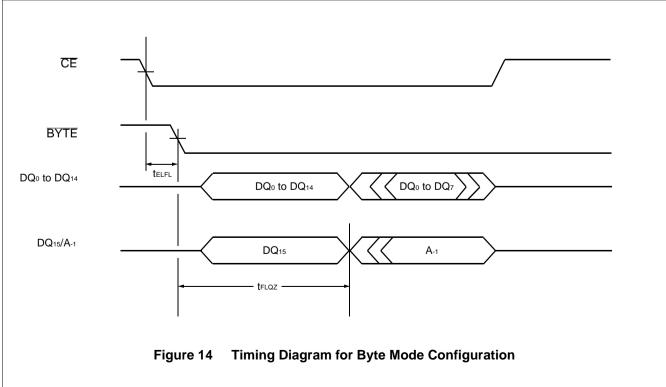
- 2. PD is data to be programmed at word address.
- 3. \overline{DQ}_7 is the output of the complement of the data written to the device.
- 4. Dout is the output of the data written to the device.
- 5. Figure indicates last two bus cycles out of four bus cycle sequence.
- 6. These waveforms are for the \times 16 mode. (The addresses differ from \times 8 mode.)

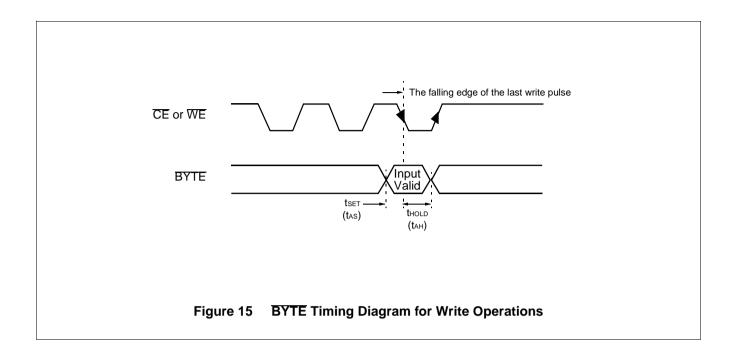

Figure 7 Alternate CE Controlled Program Operations

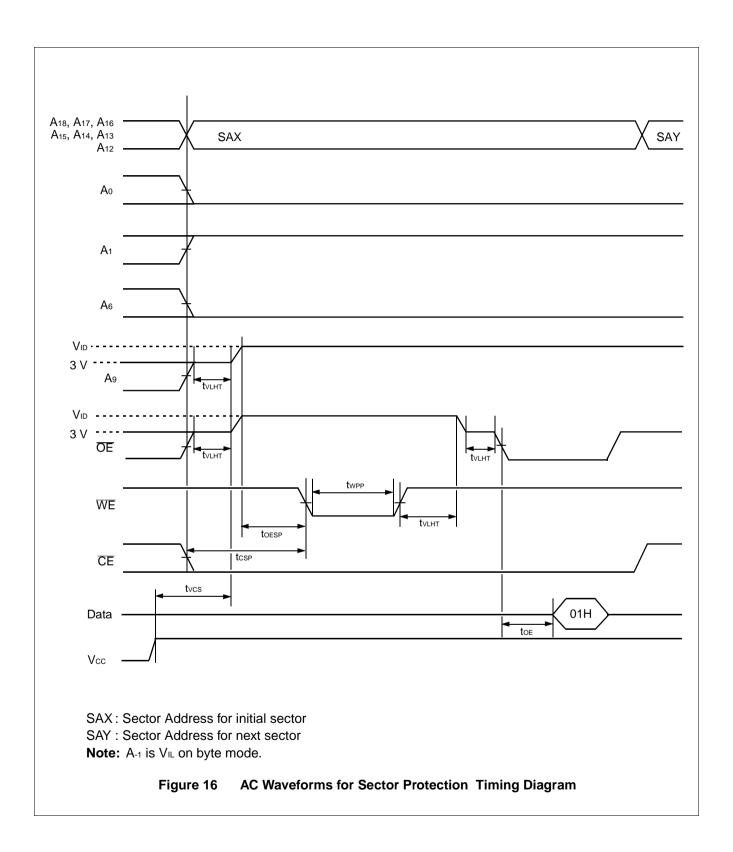

- * : DQ7 = Valid Data (The device has completed the Embedded operation.)
- **: Maximam delay time is expected until data is valid after the Embedded Operation has been completed.

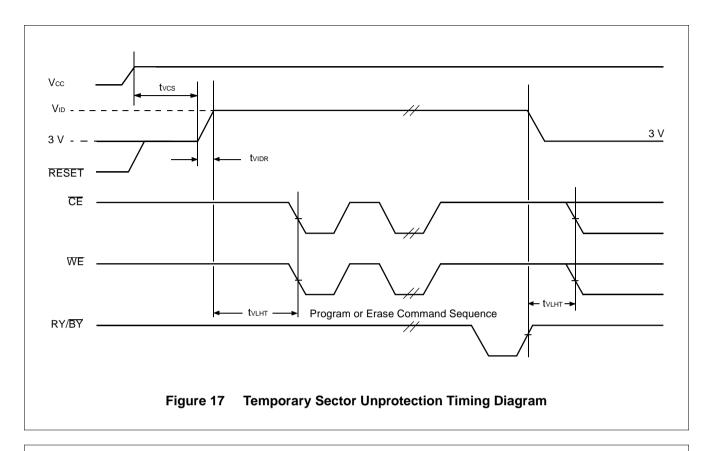

Figure 9 AC Waveforms for Data Polling during Embedded Algorithm Operations

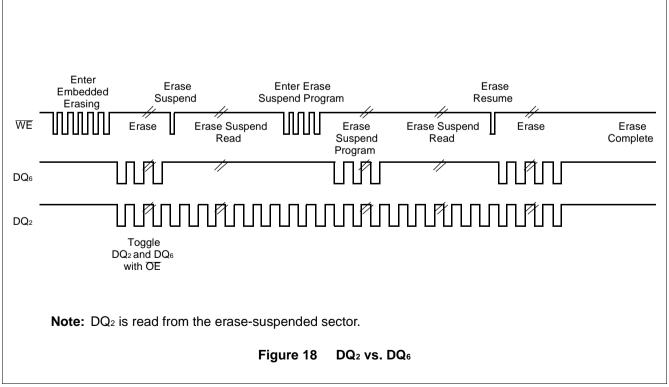


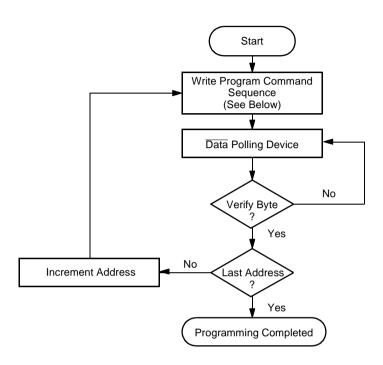

*: DQ6 Stops toggling. (The device has completed the Embedded operation.)

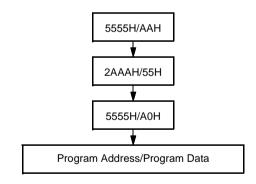

Figure 10 AC Waveforms for Taggle Bit I during Embedded Algorithm Operations











EMBEDDED PROGRAM ™ ALGORITHM

Program Command Sequence* (Address/Command):

*: The sequence is applied for × 16 mode. The addresses differ from × 8 mode.

Figure 19 Embedded Program™ Algorithm

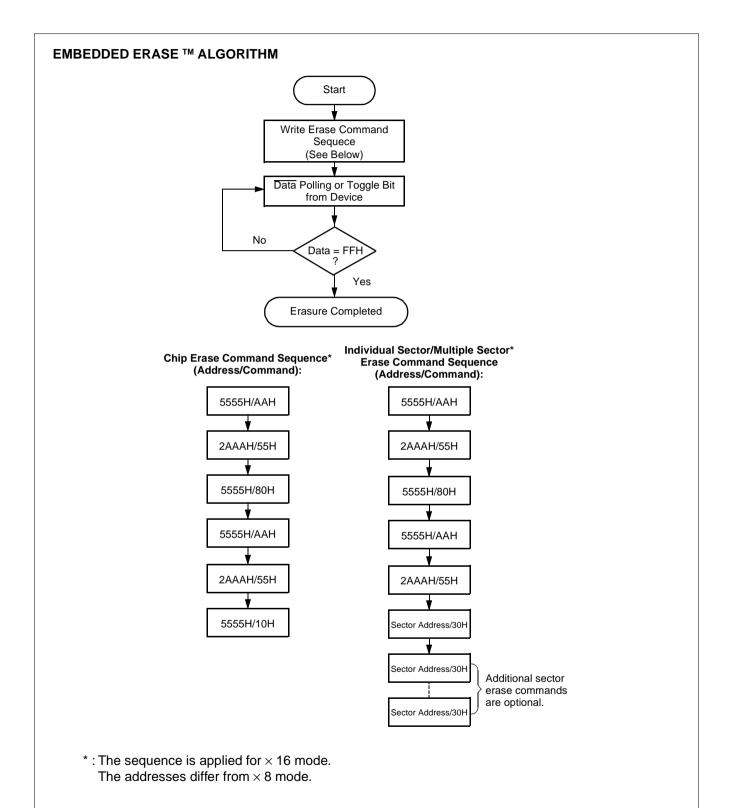
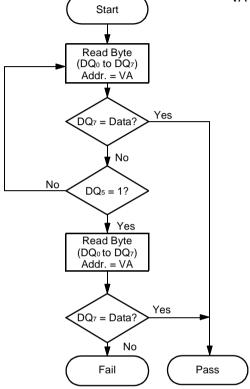
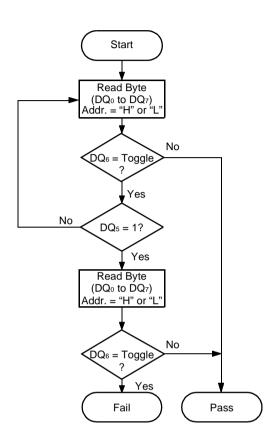
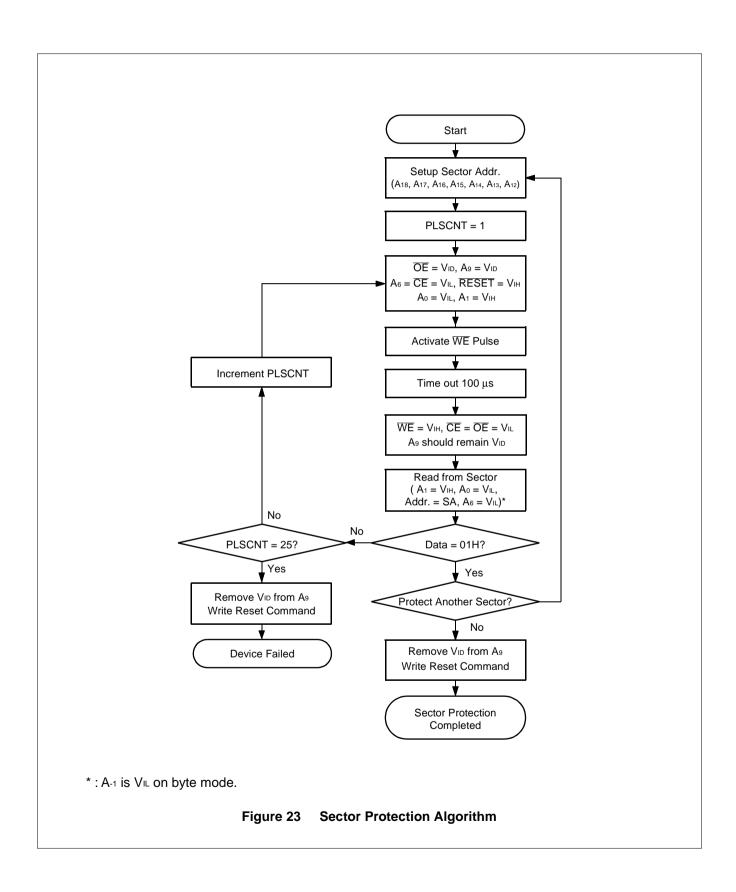



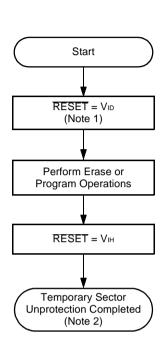
Figure 20 Embedded Erase™ Algorithm



VA = Address for programming

- = Any of the sector addresses within the sector being erased during sector erase or multiple erases operation.
- = Any of the sector addresses within the sector not being protected during sector erase or multiple sector erases operation.


Note: DQ7 is rechecked even if DQ5 = "1" because DQ7 may change simultaneously with DQ5.


Figure 21 Data Polling Algorithm

Note: DQ $_6$ is rechecked even if DQ $_5$ = "1" because DQ $_6$ may stop toggling at the same time as DQ $_5$ changing to "1".

Figure 22 Toggle Bit Algorithm

Notes: 1. All protected sectors are unprotected.

2. All previously protected sectors are protected once again.

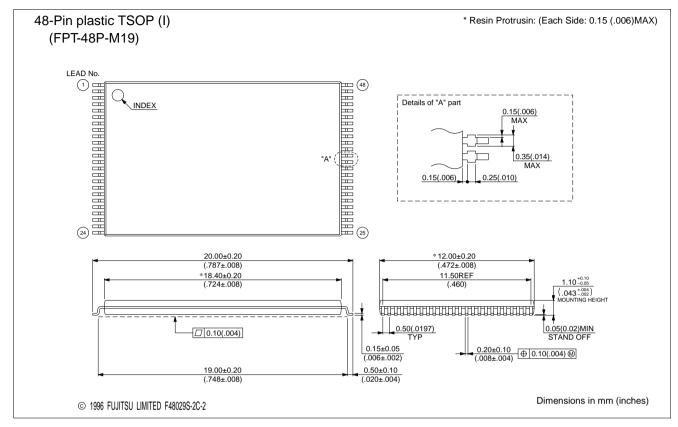
Figure 24 Temporary Sector Unprotection Algorithm

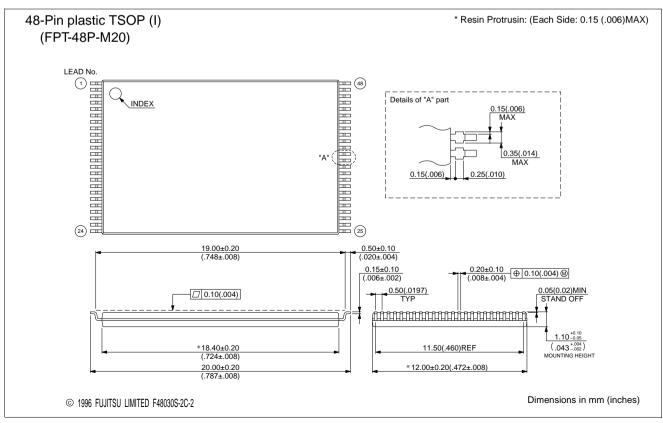
■ ERASE AND PROGRAMMING PERFORMANCE

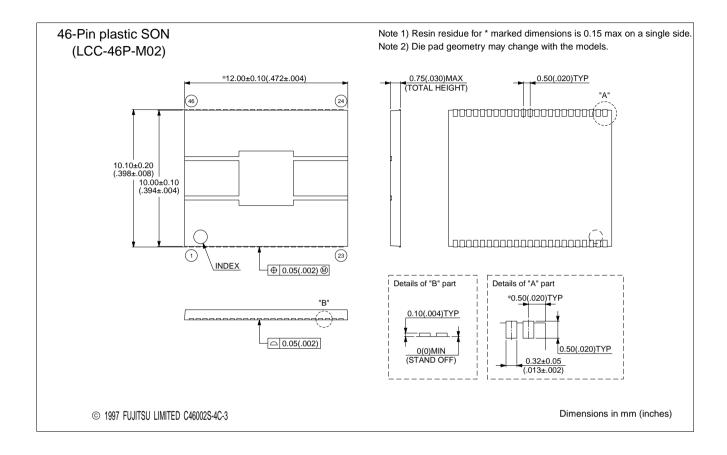
Parameter		Limits			Comments	
Farameter	Min.	Тур.	Max.	Unit	Comments	
Sector Erase Time	_	1	15	sec	Excludes programming time prior to erasure	
Byte Programming Time	_	9	3,600	110	Excludes system-level	
Word Programming Time	_	16	5,200	μs	overhead	
Chip Programming Time	_	9	50	sec	Excludes system-level overhead	
Erase/Program Cycle	100,000	_	_	cycles	_	

■ TSOP (I) PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Тур.	Max.	Unit
CIN	Input Capacitance	V _{IN} = 0	T.B.D	T.B.D	pF
Соит	Output Capacitance	Vоит = 0	T.B.D	T.B.D	pF
C _{IN2}	Control Pin Capacitance	V _{IN} = 0	T.B.D	T.B.D	pF


Note: Test conditions $T_A = 25$ °C, f = 1.0 MHz


■ SON PIN CAPACITANCE


Parameter Symbol	Parameter Description	Test Setup	Тур.	Max.	Unit
Cin	Input Capacitance	Vin = 0	T.B.D	T.B.D	pF
Соит	Output Capacitance	Vоит = 0	T.B.D	T.B.D	pF
C _{IN2}	Control Pin Capacitance	V _{IN} = 0	T.B.D	T.B.D	pF

Note: Test conditions $T_A = 25$ °C, f = 1.0 MHz

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED

Corporate Global Business Support Division

Electronic Devices

KAWASAKI PLANT, 4-1-1, Kamikodanaka

Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC.

Semiconductor Division 3545 North First Street

San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10

D-63303 Dreieich-Buchschlag

Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD

#05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9709

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.